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Wykład 13

Nierówność Clausiusa; pierwszy krok do entropii

Nierówność Clausiusa jako test zgodności obiegu z II zasadą termodynamiki

Entropia; definicja

Entropia w przemianie nieodwracalnej; po raz pierwszy

Entropia w procesie rozpręŜania swobodnego i odwracalnego 

rozpręŜania izotermicznego gazu doskonałego

Entropia w ujęciu statystycznym

Zmiany entropii gazu doskonałego podczas dowolnej przemiany 

w układzie zamkniętym

Zmiany entropii gazu półdoskonałego podczas dowolnej przemiany

w układzie zamkniętym

Zmiany entropii dla cieczy i ciała stałego

Czy entropia moŜe maleć?
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Nierówność Clausiusa; pierwszy krok do entropii

KaŜdy obieg odwracalny moŜna zastąpić pewną liczbą obiegów Carnota

Rozpatrzymy zatem wszystkie odwracalne obiegi Carnota; prawo- i 

lewobieŜne (silniki cieplne i chłodziarki) plus wszystkie obiegi nieodwracalne

Odwracalny silnik cieplny

z I zasady: W = Qg – Qd a więc 

Qg ≥ Qd
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W

z II zasady: 
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PokaŜemy, Ŝe dla wszystkich obiegów zamkniętych

obowiązuje następująca nierówność/równość, 

nazywana nierównością Clausiusa:
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Q
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δδδδ
∫∫∫∫
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Obliczymy                  dla odwracalnego silnika cieplnego: 
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gdzie skorzystaliśmy z:
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0QQQ dg
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∫∫∫∫

∫∫∫∫

Dla wszystkich odwracalnych silników cieplnych:

dla  Td → Tg

a                            dla wszystkich T.

∫∫∫∫
δδδδ
T

Q

Mamy zatem:

0QQQ dg →→→→−−−−====δδδδ∫∫∫∫
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Obieg Carnota, gaz doskonały
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Dla silnika nieodwracalnego pracującego pomiędzy Tg i Td pobierającego Qg:

a poniewaŜ:                                dla obiegu odwracalnego i nieodwracalnego

W'W <<<<

dg QQW −−−−====

musi zachodzić:                                                 a zatem: dgdg QQ'QQ −−−−<<<<−−−− dd Q'Q >>>>

Podsumowując, dla silnika nieodwracalnego:

0
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Jednak dla ustalonych Tg, Td i Qg, gdy rośnie nieodwracalność, czyli W' → 0 i

0
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δδδδ
→→→→δδδδ ∫∫∫∫∫∫∫∫

(wielkości primowane dotyczą silnika nieodwracalnego)

mamy: gd Q'Q →→→→
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Tak więc, dla wszystkich silników nieodwracalnych:

0
T

Q

;0Q

<<<<
δδδδ

≥≥≥≥δδδδ

∫∫∫∫

∫∫∫∫

a dla wszystkich silników odwracalnych i nieodwracalnych:

0
T

Q

;0Q

≤≤≤≤
δδδδ

≥≥≥≥δδδδ

∫∫∫∫

∫∫∫∫
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Qg

Qd

Tg

Td

W

Odwracalna chłodziarka

z I zasady: W + Qd = Qg

a więc Qg > Qd (dla Tg → Td,  Qg → Qd) 

z II zasady: 
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∫∫∫∫

∫∫∫∫

Dla wszystkich 

odwracalnych chłodziarek

(obiegów lewobieŜnych):



7

Dla chłodziarki nieodwracalnej pracującej pomiędzy Td i Tg pobierającej Qd:

W'W >>>>

a poniewaŜ:                                dla obiegu odwracalnego i nieodwracalnegodg QQW −−−−====

musi zachodzić:                                               co oznacza, Ŝe: dgdg QQQ'Q −−−−>>>>−−−− gg Q'Q >>>>

Tak więc dla chłodziarki nieodwracalnej:
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Jednak, dla ustalonych Td, Tg i Qd, gdy nieodwracalność maleje, 

W' → W   i   Q'g → Qg i: 0
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Dla ustalonych Td, Tg i Qd, gdy nieodwracalność rośnie, 
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<<<<∫∫∫∫ δδδδ

Dla wszystkich chłodziarek nieodwracalnych:
0

T

Q

;0Q

<<<<∫∫∫∫
δδδδ

<<<<∫∫∫∫ δδδδ

a dla wszystkich chłodziarek odwracalnych i nieodwracalnych:
0

T

Q

;0Q

≤≤≤≤∫∫∫∫
δδδδ

≤≤≤≤∫∫∫∫ δδδδ

W' → ∞ i   Q'g → ∞ i:

Dla wszystkich moŜliwych obiegów                     zachodzi0Q
≤≤≤≤
≥≥≥≥∫∫∫∫ δδδδ

przy czym równość zachodzi dla obiegów odwracalnych. 
0

T

Q
≤≤≤≤

δδδδ
∫∫∫∫

Udowodniliśmy nierówność Clausiusa



9
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Nierówność Clausiusa jako test zgodności obiegu z II zasadą termodynamiki

Przykład 

Lokalizacja x P MPa

1 0 0.7

2 1 0.7

3 0.9 0.015

4 0.1 0.015

∫∫∫∫
δδδδ

++++∫∫∫∫
δδδδ

====∫∫∫∫
δδδδ 4
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PoniewaŜ transfer ciepła jest izotermiczny:

(((( )))) (((( )))) 



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Entropia; definicja 

Definicja entropii jest oparta na II zasadzie 

termodynamiki, tzn. nierówności Clausiusa: 

Dla obiegu odwracalnego nierówność

Clausiusa staje się równością: 0
T

Q
====∫∫∫∫

δδδδ

0
T

Q
≤≤≤≤∫∫∫∫

δδδδ

a
b

c

P

1

2

V

Procesy:                                              

są odwracalne

0
T

Q

T

Q 1

2 b

2

1 a

====∫∫∫∫ 






 δδδδ
++++∫∫∫∫ 







 δδδδ

0
T

Q

T

Q 1

2 b

2

1 c

====∫∫∫∫ 






 δδδδ
++++∫∫∫∫ 







 δδδδ

0
T

Q

T

Q
2

1 c

2

1 a

====






 δδδδ
−−−−







 δδδδ
∫∫∫∫∫∫∫∫

 2  1 , 1  2 , 2  1 →→→→→→→→→→→→
a b c

...
T

Q

T

Q 2

1 c
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1 a

====∫∫∫∫ 






 δδδδ
====∫∫∫∫ 







 δδδδ

  1  2 , 2  1 →→→→→→→→
a b

  1  2 , 2  1 →→→→→→→→
c b

Odejmując stronami: 
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Wniosek:                nie zaleŜy od wyboru drogi pomiędzy stanami 1 i 2.  ∫∫∫∫
δδδδ2

1 T

Q

ZaleŜy jednak od stanów 1 i 2, zatem musi być róŜnicą dwóch liczb 

określonych dla stanów 1 i 2 (i innych) zatem musi być funkcją stanu.   

pod warunkiem, Ŝe proces prowadzący od stanu 1 do 2 jest odwracalny.

Funkcję stanu S nazywamy entropią.  Dowolna funkcja stanu moŜe być 

takŜe parametrem termodynamicznym układu (jeśli taki będzie nasz

wybór). Entropia moŜe być zatem parametrem układu, który wraz z 

innym parametrem (np. T, P, v, x , u, h) określa stan układu.

Entropia układu do którego dostarczamy ciepło, rośnie, a entropia 

układu, który oddaje ciepło, maleje. 

Mamy więc:                                                  lub:∫∫∫∫ 






 δδδδ
====−−−−

2

1 odwr
12

T

Q
SS

odwrT

Q
dS 







 δδδδ
====

Definicja entropii
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Dla przemiany nieodwracalnej pomiędzy stanami 1 i 2:

Entropia w przemianie nieodwracalnej, po raz pierwszy (będzie więcej)

(((( )))) ∫∫∫∫ 






 δδδδ
====−−−−

2

1 odwr jakaśnieodwr
12

T

Q
SS

zatem Ŝeby wyliczyć zmianę entropii dla przemiany nieodwracalnej w 

układzie zamkniętym, zastępujemy przemianę nieodwracalną przemianą 

odwracalną pomiędzy tymi samymi stanami 1 i 2 i wyliczamy całkę:

Jeśli odwracalna przemiana jest izotermiczna:

12

2

1 odwr

SS
T

Q
−−−−====∫∫∫∫ 







 δδδδ

T

Q

T

Q
SS

2

1
12 ====∫∫∫∫

δδδδ
====−−−−

śr

2

1
12

T

Q

T

Q
SS ====∫∫∫∫

δδδδ
====−−−−

Jeśli zmiana temperatury jest nieduŜa i nie umiemy wyliczyć całki, moŜna 

skorzystać z przybliŜenia:
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Swobodne rozpręŜanie jest przemianą 

nieodwracalną; gaz nie zgromadzi się 

samorzutnie w lewym zbiorniku

Entropia w procesie rozpręŜania swobodnego …

Dla gazu doskonałego:

V2 = 2V1, T2 = T1, P2 = P1/2

Równość temperatur potwierdzona

w doświadczenia Joule’a - Thomsona

Choć stan początkowy, 1, oraz końcowy, 2, są 

stanami równowagi, stany pośrednie nie są 

stanami równowagi. Nie jest moŜliwe 

odwrócenie przemiany.

Entropia wyznacza kierunek przemiany 

nieodwracalnej. W przemianie nieodwracalnej 

entropia układu zamkniętego zawsze rośnie.

By wyliczyć entropię dla rozpręŜania 

swobodnego wykorzystamy fakt, Ŝe stan 1 i 2 

mogą być stanami odwracalnej przemiany 

izotermicznej.

stan 1

stan 2

próŜnia
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312 K

regulowany 
grzejnik

zmienne 
obciąŜenie

∫∫∫∫ δδδδ====∫∫∫∫
δδδδ

====−−−−====∆∆∆∆
2

1

2

1
12 Q

T

1

T

Q
SSS

1

2

1

2
V

V

V

V

2

1

V

V
lnNk

V

V
lnRn

V

dV
Rn

dV
V

TRn

T

1
PdV

T

1
S

2

1

2

1

========∫∫∫∫

====∫∫∫∫====∫∫∫∫====∆∆∆∆

PdVWQ

0WQdU

====δδδδ====δδδδ

====δδδδ−−−−δδδδ====Z I zasady dla przemiany 

izotermicznej:

… i odwracalnego rozpręŜania izotermicznego gazu doskonałego

gdzie      to uniwersalna stała gazowa [kJ/kmol·K].

Dla V2 = 2V1:

2lnNk
1

2
lnRnSSS 12 ========−−−−====∆∆∆∆

PokaŜemy, Ŝe taki sam wynik dostaniemy dla 

statystycznej interpretacji entropii.
 

 

P

V1 V2 V

1

2

R
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Entropia w ujęciu statystycznym

Statystyczne podejście do problemu 

rozkładu liczby cząsteczek gazu w 

dwóch połówkach izolowanego 

zbiornika pozwala na inne podejście 

do problemu zmiany entropii w 

procesie rozpręŜania swobodnego. 

Liczba mikrostanów odpowiadających danej konfiguracji to 

wielokrotność tej konfiguracji W. !n!n

!N
W

21 ⋅⋅⋅⋅
====

Łączna liczba mikrostanów 64, wszystkie mikrostany są tak samo prawdopodobne.

Konfiguracja wielokrotność obliczenie W prawdopodobieństwo

ozn. n1 n2 

I 6 0 1 6!/(6!.0!) 0,0156

II 5 1 6 6!/(5!.1!) 0,0938

III 4 2 15 6!/(4!.2!) 0,234

IV 3 3 20 6!/(3!.3!) 0,313

V 2 4 15…

1 mikrostan konfiguracji (4,2) 1 mikrostan konfiguracji (3,3)

PoniewaŜ cząsteczki są identyczne, obie połówki zbiornika są jednakowe, prawdopodobieństwo 

znalezienia dowolnej cząsteczki w kaŜdej z nich jest takie samo.
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Symboliczny wykres liczby mikrostanów

w zaleŜności od procentowej zawartości 

cząsteczek w lewej połowie zbiornika w 

przypadku bardzo duŜej liczby 

cząsteczek w zbiorniku. Niemal wszystkie 

mikrostany odpowiadają w przybliŜeniu 

równemu rozkładowi liczby cząsteczek 

gazu pomiędzy dwoma połówkami 

zbiornika. 

Wzór Boltzmanna na entropię

Entropia danego stanu to k ln z liczby mikrostanów (wielokrotności) 

konfiguracji odpowiadającej danemu stanowi. Stan termodynamiczny o 

duŜej liczbie równowaŜnych mikrostanów będzie stanem o wysokiej 

entropii

Samorzutne procesy w układzie prowadza zawsze do wzrostu jego entropii

WlnkS ====

Wzór Stirlinga: (((( )))) NNlnN!Nln −−−−≈≈≈≈

Procent cząsteczek gazu w lewej połówce

0            25           50          75          100%

L
ic

z
b
a
 m

ik
ro

s
ta

n
ó
w

W
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Przykład

Wyobraźmy sobie, Ŝe w zbiorniku znajduje się 100 nierozróŜnialnych cząsteczek. Ile 

mikrostanów odpowiada konfiguracji n1 = 50 i n2 = 50? A ile konfiguracji n1 = 100 i 

n2 = 0? Zinterpretuj uzyskane wyniki w odniesieniu do prawdopodobieństwa 

wystąpienia obydwu konfiguracji. 

(((( ))))
(((( ))))

29

264

157

21

1001,1
1004,3

1033,9

!50!50

!100

!n!n

!N
50,50W ⋅⋅⋅⋅====

⋅⋅⋅⋅

⋅⋅⋅⋅
====

⋅⋅⋅⋅
========

(((( )))) 1
1033,9

1033,9

!0!100

!100

!n!n

!N
0,100W

157

157

21

====
⋅⋅⋅⋅

⋅⋅⋅⋅
====

⋅⋅⋅⋅
========

(((( )))) (((( ))))0,100P1001,150,50P 29 ××××⋅⋅⋅⋅====

1 mikrostan konfiguracji (4,2) 1 mikrostan konfiguracji (3,3)
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Przykład

Pokazaliśmy wcześniej, Ŝe kiedy n moli gazu doskonałego  zwiększa dwukrotnie swoją

objętość na drodze rozpręŜania swobodnego, to wzrost entropii od stanu 

początkowego 1 do stanu końcowego 2 jest równy:

Korzystając ze statystycznej interpretacji entropii otrzymamy ten sam wynik: 

(((( )))) (((( ))))!2N!2N

!N
lnkWlnkS

!0!N

!N
lnkWlnkS
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Stosując wzór Stirlinga otrzymujemy:
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

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
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
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


−−−−⋅⋅⋅⋅−−−−−−−−
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2lnNk2lnRnSS 12 ========−−−−
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Zmiany entropii gazu doskonałego podczas dowolnej przemiany 

w układzie zamkniętym

Wybieramy stan początkowy 1 (T1 i V1) i 2 (T2 i V2).  Przyjmujemy T1 ≠ T2 i 

V1 ≠ V2 i nie precyzujemy drogi czyli przemiana jest dowolna (ale quasistatyczna

czyli odwracalna).

Z pierwszej zasady termodynamiki: W.dUQ        W;-QdU δδδδ++++====δδδδδδδδδδδδ====

Dla gazu doskonałego:

co daje: ,
V

dV
TRndTnCQ V ++++====δδδδ a po podzieleniu przez T otrzymujemy:

.
V

dV
Rn

T

dT
nC

T

Q
dS V ++++====

δδδδ
====

Po scałkowaniu od stanu początkowego 1 do stanu końcowego 2 mamy:

.
V

V
lnRn

T

T
lnnC

V

dV
Rn

T

dT
nC

T

Q
SS

1

2

1

2
V

2

1

2

1
V

2

1
12 ++++====∫∫∫∫++++∫∫∫∫====∫∫∫∫

δδδδ
====−−−−

1

2

1

2
V12

V

V
lnRn

T

T
lnnCSSS ++++====−−−−====∆∆∆∆

niezaleŜnie od przemiany gazu 

doskonałego prowadzącej z 1 do 2. 

praca w

układzie

zamkniętym
,

V

dV
TRnPdVW        ;dTnCdU V ========δδδδ====
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Zmiany entropii gazu półdoskonałego podczas dowolnej przemiany

w układzie zamkniętym

.
V

dV
Rn

T

dT
nC

T

Q
dS V ++++====

δδδδ
====
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C
n1S2S ++++∫∫∫∫====∫∫∫∫++++∫∫∫∫====−−−−

Gdyby CV nie zaleŜało od T moŜna byłoby je wynieść przed 

całkę i otrzymalibyśmy wyraŜenie na zmianę entropię dla gazu 

doskonałego. Dla gazu półdoskonałego naleŜy obliczyć całkę:

∫∫∫∫
2

1

V dT
T

C

Jednak najczęściej oblicza się (i tablicuje):                       co sugeruje zamianę CV na 

CP i takŜe, jak zobaczymy, V na P.
∫∫∫∫
2

1

P dT
T

C

RóŜnica pojawi się przy całkowaniu wyraŜenia:
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Po scałkowaniu od stanu początkowego 1 do stanu końcowego 2 otrzymamy:

(((( )))) (((( )))) ====−−−−∫∫∫∫++++∫∫∫∫====∫∫∫∫−−−−∫∫∫∫====−−−−
1
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C
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C
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2

0
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1

By uprościć drugi wyraz (zastąpić V przez P) wykorzystujemy równanie stanu gazu 

doskonałego (i półdoskonałego):                       .TRnPV ====

P

dP
Rn

T

dT
nCdS P −−−−====daje:          

gdzie całka:                              ∫∫∫∫====
T

T

P0
T

0

dT
T

C
s

jest stablicowaną funkcją jednej zmiennej T (zobacz dla powietrza Tabelę A.7, SBvW, 

dla ciśnienia 0,1 MPa). Dla innego ciśnienia TRZEBA uwzględnić poprawkę.

(((( ))))
1

20
T

0
T P

P
lnRn  ss n

12
−−−−−−−−

gdzie parametry stanu to P i T.

i po podzieleniu prawej strony przez           i lewej przez PV otrzymamy:TRn

TdRnVdPPdV ====++++Po zróŜniczkowaniu:

T

dT

P

dP

V

dV
====++++ co po podstawieniu do: 
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Zmiany entropii dla cieczy i ciała stałego

RozwaŜamy infinitezymalną zmianę stanu substancji nieściśliwej w trakcie przemiany 

odwracalnej. 

CdTq ====δδδδ

a więc: 

T

dT
C

T

du
ds ≈≈≈≈≈≈≈≈

gdyŜ zmiany objętości właściwej dla cieczy i ciała stałego są nieduŜe.

1

2
12

T

T
lnCss ====−−−−

gdzie C to ciepło właściwe danej substancji:

Z I zasady termodynamiki:

.CCC VP ≈≈≈≈≈≈≈≈

duPdvduq ≈≈≈≈++++====δδδδ

Z II zasady termodynamiki dla przemiany odwracalnej: ,
T

q
ds

δδδδ
====

δq to ciepło dostarczone w trakcie przemiany odwracalnej (na kg substancji):

Jeśli ciepło właściwe nie zaleŜy od temperatury: 

Jeśli zaleŜy, to: 
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∫∫∫∫====−−−−
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1

12 dT
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Czy entropia moŜe maleć?   (moŜe, ale nie w układzie izolowanym)

Pokazaliśmy, Ŝe dla izotermicznego odwracalnego rozpręŜania 

gazu doskonałego entropia rośnie:

.0
V

V
lnNkPdV

T

1

T

Q
S

1

2
2

1

V

V

2

1

>>>>====∫∫∫∫ ∫∫∫∫====
δδδδ

====∆∆∆∆

Oznacza to jednak, Ŝe dla przemiany odwrotnej, czyli izotermicznego odwracalnego 

spręŜania, entropia będzie maleć (wynika to z nierówności/równości Clausiusa dla 

obiegu zamkniętego, ale i wprost z rachunku dla takiej przemiany; przecieŜ układ 

oddaje ciepło):
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V
lnNkPdV
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1
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Q
S

2

1
1

2

V

V

1

2

<<<<========
δδδδ

====∆∆∆∆ ∫∫∫∫ ∫∫∫∫

gdyŜ δQ > 0 i V2 > V1

Entropia zawsze rośnie dla przemiany nieodwracalnej w układzie izolowanym. Tutaj 

układ nie jest izolowany (jest wymiana ciepła ze zbiornikiem ciepła) i przemiana jest 

odwracalna. 
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Jeśli potraktujemy gaz i zbiornik ciepła jako dwie części 

większego układu izolowanego, to entropia całego układu 

będzie równa zeru dla odwracalnego rozpręŜania 

izotermicznego: 

Entropia układu izolowanego nigdy nie maleje

Entropia jest miarą nieodwracalności procesów zachodzących w układzie

0
T

dQ

T

dQ
SSS

2

1 zb

zb
2

1 gaz

gaz
zbgaz ≈≈≈≈∫∫∫∫−−−−∫∫∫∫====∆∆∆∆++++∆∆∆∆====∆∆∆∆

Dla odwracalnego spręŜania izotermicznego, z tych samych powodów:

0
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dQ

T

dQ
SSS

2

1 zb

zb
2

1 gaz

gaz
zbgaz ≈≈≈≈∫∫∫∫++++∫∫∫∫−−−−====∆∆∆∆++++====∆∆∆∆

gdyŜ Qgaz > 0, Qgaz = Qzb i temperatury Tgaz i Tzb róŜnią 

się infinitezymalnie, Tgaz ≈ Tzb
 

 

P

V1 V2 V

1

2

Entropia układu izolowanego nie zmienia się w przemianie odwracalnej. Gdy zachodzi 

przemiana nieodwracalna, w układzie generowana jest dodatkowa entropia. Zatem 

zmiana entropii układu izolowanego w wyniku zachodzącej w nim przemiany 

nieodwracalnej nie bilansuje się do zera, lecz będzie dodatnia (entropia układu 

izolowanego rośnie w wyniku przemiany nieodwracalnej). 
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Druga zasada termodynamiki

Entropia w układzie izolowanym nigdy nie maleje

0S ≥≥≥≥∆∆∆∆

Jest to jeszcze jedno sformułowanie II zasady 

termodynamiki

Sformułowanie Kelvina – Plancka

Sformułowanie Clausiusa

Nierówność Clausiusa
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Sprawdzian 1 

Gaz doskonały w stanie początkowym 1 ma 

temperaturę T1. W stanach końcowych a i b, które 

gaz moŜe osiągnąć w wyniku przemian 

zaznaczonych na wykresie, jego temperatura T2

jest większa niŜ w stanie początkowym.

Czy zmiana entropii w przemianie prowadzącej ze stanu 1 do stanu a jest większa, 

taka sama, czy mniejsza niŜ w przemianie prowadzącej do stanu b?

objętość V

c
iś

n
ie

n
ie

 P

1, T1

b, T2

a, T2

Woda jest ogrzewana za pomocą kuchenki. Uszereguj od największej do najmniejszej 

zmiany entropii wody w następujących przedziałach temperatury: a) od 20°C do 

30°C, b) od 30°C do 35°C i c) od 80°C do 85°C.

Sprawdzian 2 


