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Nierownos¢ Clausiusa; pierwszy krok do entropii

Pokazemy, ze dla wszystkich obiegow zamknigtych 50
obowiazuje nastgpujaca nierownos¢/rownosc, §_ <0
nazywana nierownoscig Clausiusa: > T

Kazdy obieg odwracalny mozna zastapic¢ pewng liczba obiegow Carnota

Rozpatrzymy zatem wszystkie odwracalne obiegi Carnota; prawo- i
lewobiezne (silniki cieplne i chlodziarki) plus wszystkie obiegi niecodwracalne

Odwracalny silnik cieplny

-
g

z 1 zasady: W = Q, — Q, a wigc ‘ Q
- O~

z Il zasady:




ciSnienie P, kPa

0Q

Obliczymy §T dla odwracalnego silnika cieplnego:

{DSQ J'SQ ISQ J'SQ J'SQ ISQ J‘SQ Q: Qq _ 0
1y I, Tq
Obieg C . . Q Ty
g Carnota, gaz doskonaty gdzie skorzystaliSmy z: =
| Qa Ty
— izotermy
— adiabaty §8Q=Qg—Qd>0
Mamy zatem:
355_(2:0
T

dla T,»T, §$8Q=Q,-Qq—0

a i; °Q 0 dla wszystkich T.

T
{>6Q20

objetosé wiasciwa v, m3/kg

Dla wszystkich odwracalnych silnikow cieplnych: 5Q

PT =0 s



Dla silnika nieodwracalnego pracujacego pomiedzy T, i T, pobierajacego Q,:

W'<' W (wielkosci primowane dotyczg silnika nieodwracalnego)

a poniewaz: W =Qg—-Qgq dla obiegu odwracalnego i nieodwracalnego
musi zachodzi¢: Qg -Q'3 < Qg - Qg a zatem: Q'a>Qq

Podsumowujac, dla silnika nieodwracalnego:

§5Q=Qg_Q'd<0

T T, Ty

$8Q=Qg ~Q'a> 03

Jednak dla ustalonych T, T; i Q,, gdy rosnie nieodwracalnos¢, czyli W' — 0 i

Qq—>Qg mamy: iﬁSQ—)O; fs]?z(ig—?rd <0
g d



Tak wigc, dla wszystkich silnikow nieodwracalnych:

§8Q20;
=

—<0
T

a dla wszystkich silnikow odwracalnych i nieodwracalnych:

§8Q20;

SBSTQSO



Odwracalna chlodziarka
z 1 zasady: W+ Q,;=Q,
awiec Q,>Q,(dlaT, — T Q, — Q)

1 3
$3Q=[8Q+[8Q=-Q, +Qq <0
2 4

z 11 zasady:

Qa _Qs :_Qg+Qd=
T, T T, T,

Dla wszystkich
odwracalnych chlodziarek
(obiegow lewobieznych):

§6Qso
o




Dla chlodziarki nieodwracalnej pracujacej pomiedzy T, i T, pobierajacej Qg:

W'> W
a poniewaz: W = Qg —Qq4 dlaobiegu odwracalnego i nieodwracalnego
musi zachodzi¢: Q's—Q4>Qy—Qq cooznacza,ze: Q'y> Qg

!

Tak wig¢c dla chlodziarki nieodwracalne;j:

§8—Q=—Q'g+Qd <l0
T T, Ty

$3Q=-Q'y+Qq <0;

Jednak, dla ustalonych T, T, i Q,4, gdy nieodwracalno$¢ maleje,

. . 0Q Qs Qg4
W' - W ' : 00Q < 0; —=— + <0
PQ—Q $3Q T T, Ty




Dla ustalonych T, T, i Q4, gdy nieodwracalnos¢ rosnie,

8—Q=—Q'g+Qd <0

T T, Ty

W —w i Q,—w i $5Q < 0;

$6Q < 0;
Dla wszystkich chlodziarek nieodwracalnych: 5Q
<0

§_

T
$0Q < 05

a dla wszystkich chlodziarek odwracalnych i nieodwracalnych: 5Q i
— <

Dla wszystkich mozliwych obiegow §>5Q§ 0 zachodzi 0Q

przy czym rownos¢ zachodzi dla obiegow odwracalnych. T

UdowodniliSmy nierownos¢ Clausiusa



Nierownos¢ Clausiusa jako test zgodnosci obiegu z Il zasada termodynamiki

Przyklad
2 TURBINA

Lokalizacja X P MPa
1 0 0.7
2 1 0.7
3 0.9 0.015
4 0.1 0.015

5Q _ ?SQ . ‘I‘ 5Q

T ;T 3T

N u

Poniewaz transfer ciepla jest izotermiczny: b

2 4 2 4 _ _
[3Q 18Q_ 1 fi, 1 ISsz.(hz hy by h3j
1 3 T T(2) T3(4) 3 T T3

T
- 2763.5-697.22 N 463.13 —2361.71
438.15 327.09

j =-1.089 - mkJ/ K< 0
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Entropia; definicja

Definicja entropii jest oparta na Il zasadzie
termodynamiki, tzn. nierownosci Clausiusa:

Dla obiegu odwracalnego nierownos¢
Clausiusa staje si¢ rownoscia:

sq odwracalne

V
Procesy: 152,251,152 Z(SQ)
a

Odejmujac stronami:

J

LT

°Q _
.
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28
Whiosek: j —— nie zalezy od wyboru drogi pomi¢dzy stanami 1 i 2.
1

Zalezy jednak od stanow 1 i 2, zatem musi by¢ roznica dwoch liczb
okreslonych dla stanow 1 i 2 (i innych) zatem musi by¢ funkcja stanu.

Definicja entropii

2(8 5
Mamy wigc: S9—51 = I(Q) lub: dS = (Qj
1 T odwr T odwr

pod warunkiem, ze proces prowadzacy od stanu 1 do 2 jest odwracalny.

Funkcje stanu S nazywamy entropia. Dowolna funkcja stanu moze by¢
takze parametrem termodynamicznym ukladu (jesli taki bedzie nasz
wybor). Entropia moze by¢ zatem parametrem ukladu, ktory wraz z
innym parametrem (np. T, P, v, X, u, h) okresla stan ukladu.

Entropia ukladu do ktorego dostarczamy cieplo, rosnie, a entropia

ukladu, ktory oddaje cieplo, maleje.
11



Entropia w przemianie nieodwracalnej, po raz pierwszy (bedzie wig¢cej)

Dla przemiany nieodwracalnej pomig¢dzy stanami 1i 2:

=f(6<zj
nieodwr 7\ T jaka$ odwr

zatem zeby wyliczy¢ zmiang entropii dla przemiany nieodwracalnej w
ukladzie zamknig¢tym, zast¢pujemy przemian¢ niecodwracalng przemiang
odwracalng pomi¢dzy tymi samymi stanami 1 i 2 i wyliczamy calke:

(S—51)

2(8
I(fj =52-54
1 odwr
0 L : 18Q _Q
Jesli odwracalna przemiana jest izotermiczna: Sy —S¢ = j T = -
1

Jesli zmiana temperatury jest nieduza i nie umiemy wyliczy¢ calki, mozna
skorzysta¢ z przyblizenia:
18Q _ Q

S;-S1=]—=
1 T T
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Entropia w procesie rozpr¢zania swobodnego ...

R R Swobodne rozprezanie jest przemiang
nieodwracalng; gaz nie zgromadazi si¢
* . oréznia samorzutnie w lewym zbiorniku
Cho¢ stan poczatkowy, 1, oraz koncowy, 2, sa
stanami rownowagi, stany posrednie nie sg
stan 1 stanami rownowagi. Nie jest mozliwe

odwrdocenie przemiany.

Entropia wyznacza Kierunek przemiany
= * . nieodwracalnej. W przemianie nieodwracalnej
entropia ukladu zamknigtego zawsze rosnie.

stan 2 By wyliczy¢ entropi¢ dla rozpre¢zania
swobodnego wykorzystamy fakt, ze stan 1 i 2
Dla gazu doskonalego: mog3g by¢ stanami odwracalnej przemiany
izotermicznej.

V,=2V,T,=T,P,=P,/2

Rownos¢ temperatur potwierdzona

w doswiadczenia Joule’a - Thomsona 3



.. 1 odwracalnego rozprezania izotermicznego gazu doskonalego

zm_ienne_
obcigzenie

— [T
FECEEL

Pr regulowany
1 grzejnik

2 8Q 12
AS=S, -8 = — |0
2= S1=1n = { Q
Z. 1 zasady dla przemiany dU=06Q-0W=0
izotermicznej: 5Q = SW = PdV
12 . 1% RT
AS=—[Pd j ‘o
T
Vs
nR | N Rz V2 — NkiIn2
v, ¥V Vi Vi

gdzie R to uniwersalna stala gazowa [kJ/kmol-K].

DlaV,=2V,:

AS=8, -S4 :nﬁln%=Nklnz

Pokazemy, ze taki sam wynik dostaniemy dla

statystycznej interpretacji entropii.
14



Entropia w ujeciu statystycznym

___________ o o
© ©

1 mikrostan konfiguracji (4,2) 1 mikrostan konfiguracji (3,3)

Statystyczne podejscie do problemu
rozkladu liczby czasteczek gazu w
dwoch potowkach izolowanego
zbiornika pozwala na inne podejscie
do problemu zmiany entropii w
procesie rozpre¢zania swobodnego.

Poniewaz czasteczki sg identyczne, obie polowki zbiornika sa jednakowe, prawdopodobienstwo
znalezienia dowolnej czasteczki w kazdej z nich jest takie samo.

Konfiguracja wielokrotnos¢  obliczenie W
ozn. nl n2
I 6 0 1 6!/(6!-0!)
I 5 1 6 6!/(5!'1!)
I 4 2 15 6!/(4!-2!)
1A% 3 3 20 6!/(3!3!)
\% 2 4 15...

prawdopodobienstwo

0,0156
0,0938
0,234
0,313

L.aczna liczba mikrostanow 64, wszystkie mikrostany sg tak samo prawdopodobne.

Liczba mikrostanow odpowiadajacych danej konfiguracji to W = N!

wielokrotnos¢ tej konfiguracji W.

ng!ln,! 15



Liczba mikrostanow W

Symboliczny wykres liczby mikrostanow
w zaleznosci od procentowej zawartosci
czasteczek w lewej polowie zbiornika w
przypadku bardzo duzej liczby
czasteczek w zbiorniku. Niemal wszystkie
mikrostany odpowiadaja w przyblizeniu

| | | rownemu rozkladowi liczby czgsteczek

| I — gazu pomi¢dzy dwoma polowkami
0 25 90 75 100% . .
zbiornika.

Procent czasteczek gazu w lewej potowce

Wzor Boltzmanna na entropig¢

S=KkinW

Entropia danego stanu to k In z liczby mikrostanow (wielokrotnosci)
konfiguracji odpowiadajacej danemu stanowi. Stan termodynamiczny o
duzej liczbie rownowaznych mikrostanow bedzie stanem o wysokiej
entropii

Samorzutne procesy w ukladzie prowadza zawsze do wzrostu jego entropii

Wzor Stirlinga: InNl!= N(ln N)— N 6



Przyklad

o= =
N e

9 e e
L

1 mikrostan konfiguracji (4,2) 1 mikrostan konfiguracji (3,3)

Wyobrazmy sobie, ze w zbiorniku znajduje si¢ 100 nierozroznialnych czasteczek. Ile
mikrostanow odpowiada konfiguracji n, =50 i n, = 50? A ile konfiguracji n, =100 i
n, = 0? Zinterpretuj uzyskane wyniki w odniesieniu do prawdopodobienstwa
wystapienia obydwu konfiguracji.

! 100! ,33-10"
W(50,50)= OLEINNE | L IO T ke

n,!n,! 501500 (3,04,1064)2

' ' . 157
w(i00,0)= N _ 100 _9.33-10

n,!n,!  10010! 9,33.10'

P(50,50)=1,01-10% x P(100,0) 1
7



Przyklad

PokazaliSmy wczes$niej, ze kiedy n moli gazu doskonalego zwi¢ksza dwukrotnie swojg
objetos¢ na drodze rozprezania swobodnego, to wzrost entropii od stanu
poczatkowego 1 do stanu koncowego 2 jest rowny:

S, —S;{=nRIn2=NkIn2
Korzystajac ze statystycznej interpretacji entropii otrzymamy ten sam wynik:
N!
N!.0!
N!
(N/2)-(N/2)

S{ =kInW; =klIn

S, =klnW, =klIn
Stosujac wzor Stirlinga otrzymujemy:

S, -S; =k(InN!-2-kIn(N/2)!)-KkIn1

k| NInN-N-2. ElnE—E
2 2 2

=kN(lnN—ln§j=Nkln2=nﬁln2

18



Zmiany entropii gazu doskonalego podczas dowolnej przemiany
w ukladzie zamkni¢tym

Wybieramy stan poczatkowy 1 (T,iV,)i2(T,iV,). Przyjmujemy T, # T, i
V, #V,inie precyzujemy drogi czyli przemiana jest dowolna (ale quasistatyczna

czyli odwracalna).

Z. pierwszej zasady termodynamiki:

Dla gazu doskonalego:

dU =06Q-0W; 0Q =dU +oW.

— dVv

dU =nCydT; OW =PdV =nRT —,

praca w
ukladzie

zamknigetym

co daje: 8Q =nCydT + nﬁTﬂ, a po podzieleniu przez T otrzymujemy:
\%

dT —dV
dS = S—Q =nCy —+nR—-.
T T \%
Po scalkowaniu od stanu poczatkowego 1 do stanu koncowego 2 mamy:
2 2 dT 2 —dVv T, = .V
Sy —S1 = 6—Q= [nCy —+ [nR—=nCy In—2 +nRIn—=,
1T r i Vv T Vi
T _ V ° . . .
AS=S,-S;=nCy In 2 Rm2 niezaleznie od przemiany gazu

T

Vi

doskonalego prowadzacej z 1 do 2.

19




Zmiany entropii gazu poldoskonalego podczas dowolnej przemiany
w ukladzie zamkni¢tym

) dT _—dV
Roznica pojawi si¢ przy calkowaniu wyrazenia: dS = TQ =nCy T + nR7 .
2C dv  2C — vV
S(2)-S(1)=n VdT+jnR =n[—Y-dT+nRIn—2%
1 T 1 vV 17T Vi
Gdyby C, nie zalezalo od T mozna byloby je wynies¢ przed 2
calke i otrzymalibySmy wyrazenie na zmiang entropi¢ dla gazu [——dT
doskonalego. Dla gazu poldoskonalego nalezy obliczy¢ calke: 1
2
Jednak najczesciej oblicza sig (i tablicuje): [—- P AT co sugeruje zamian¢ C,, na
C, i takze, jak zobaczymy, V na P. 1 T
) dT dv dT _—dV
Zamiana C,, na C,;: dS = 0 _ =nCy —+nR—= n(CP R)— +nR—
T T \% T \%
Co po rozpisaniu daje: dS = 8—Q =nCp ﬂ —nR ﬂ _ﬂ
T T V 20



By uprosci¢ drugi wyraz (zastapic V przez P) wykorzystujemy rownanie stanu gazu
doskonalego (i poldoskonalego): PV =nRT.

Po zrézniczkowaniu: PdV + VAP = nRdT

i po podzieleniu prawej strony przez nRT i lewej przez PV otrzymamy:

P dT _
v + d = d co po podstawieniu do: dS = S—Q =nCp E —nR E — ﬂ
v P T T T T V
T —dP
daje: dS =nCp d? — an? gdzie parametry stanu to P i T.

Po scalkowaniu od stanu poczatkowego 1 do stanu koncowego 2 otrzymamy:

2C ap  bc L c
S(2)-S(1)=n[—dT- jnR =n | —XdT+n [ —2dT-nRIn-2
1 T 1 P T T, T Py
P T
n(s0 —sY ) nRIn—2Z gdzie calka: jC—P dT
L, 4 P, I
0

jest stablicowang funkcjg jednej zmiennej T (zobacz dla powietrza Tabel¢ A\7, SBvW,
dla cisnienia (0,1 MPa). Dla innego cisnienia TRZEBA uwzgledni¢ poprawke.



Zmiany entropii dla cieczy i ciala stalego

Rozwazamy infinitezymalng zmiang stanu substancji nieSciSliwej w trakcie przemiany
odwracalnej.

Z 1 zasady termodynamiki: 0q =du+ Pdv = du

gdyz zmiany objetosci wlasciwej dla cieczy i ciala stalego sa nieduze.

0q to cieplo dostarczone w trakcie przemiany odwracalnej (na kg substancji):

o0q = CdT
gdzie C to cieplo wlasciwe danej substancji: C~Cp ~Cy.
s : . oq
Z. 11 zasady termodynamiki dla przemiany odwracalne;j: ds = ? ,
a wiec: q JT
u
ds~—=~C—
T T
I
Jesli cieplo wlasciwe nie zalezy od temperatury: 3 —s; =Cln= T,
tc(T
Jesli zalezy, to: $2—%1 I—
1 L 22




Czy entropia moze male¢? (moze, ale nie w ukladzie izolowanym)

PokazaliSmy, ze dla izotermicznego odwracalnego rozpre¢zania
gazu doskonalego entropia rosnie:
25Q 1Y% \Y
As =122 -1 Ppav = NkIn Y2 > 0.
1 T Ty, Vi
""""" gdyzoQ>0iV,>V,

Oznacza to jednak, ze dla przemiany odwrotnej, czyli izotermicznego odwracalnego
spre¢zania, entropia bedzie male¢ (wynika to z nierownosci/rownosci Clausiusa dla
obiegu zamknigtego, ale i wprost z rachunku dla takiej przemiany; przeciez uklad

oddaje cieplo): ; v
1

) 1 V

AS:jTQ=¥ JPaV =NkIn L <o.

2 V, 2

Entropia zawsze rosnie dla przemiany nieodwracalnej w ukladzie izolowanym. Tutaj
uklad nie jest izolowany (jest wymiana ciepla ze zbiornikiem ciepla) i przemiana jest
odwracalna.
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Jesli potraktujemy gaz i zbiornik ciepla jako dwie czgsci
wigkszego ukladu izolowanego, to entropia calego ukladu
bedzie rowna zeru dla odwracalnego rozpre¢zania

izotermicznego:
2dQ 2d

AS = ASgy; + ASyp = L —I@zﬂ
1 Tgaz 1 Tap

.......... gdyz Q,,, >0, Q,,, = Q,, i temperatury T, i T, roznia
v si¢ infinitezymalnie, T,,, =T,

Dla odwracalnego spre¢zania izotermicznego, z tych samych powodow:

2dQ 2d
gaz +I sz ~
1 Tgaz 1 sz

0

AS =Sy, +AS,, = -

Entropia ukladu izolowanego nie zmienia si¢ w przemianie odwracalnej. Gdy zachodzi
przemiana nieodwracalna, w ukladzie generowana jest dodatkowa entropia. Zatem
zmiana entropii ukladu izolowanego w wyniku zachodzacej w nim przemiany
nieodwracalnej nie bilansuje si¢ do zera, lecz bedzie dodatnia (entropia ukladu
izolowanego rosnie w wyniku przemiany nieodwracalnej).

Entropia ukladu izolowanego nigdy nie maleje

Entropia jest miara nieodwracalnosci procesow zachodzacych w ukladzie



Druga zasada termodynamiki
AS >0

Entropia w ukladzie izolowanym nigdy nie maleje

Jest to jeszcze jedno sformulowanie Il zasady
termodynamiki

Sformulowanie Kelvina — Plancka
Sformulowanie Clausiusa

Nierownos¢ Clausiusa
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Sprawdzian 1

Woda jest ogrzewana za pomocg kuchenki. Uszereguj od najwi¢kszej do najmniejszej
zmiany entropii wody w nastgpujacych przedzialach temperatury: a) od 20°C do
30°C, b) od 30°C do 35°C i c) od 80°C do 85°C.

a, T,

cisSnienie P

v

objetos¢ V

Sprawdzian 2

Gaz doskonaly w stanie poczatkowym 1 ma
temperature¢ T,. W stanach koncowych a i b, ktore
gaz moze 0siagna¢ w wyniku przemian
zaznaczonych na wyKresie, jego temperatura T,
jest wigksza niz w stanie poczatkowym.

Czy zmiana entropii w przemianie prowadzacej ze stanu 1 do stanu a jest wi¢ksza,
taka sama, czy mniejsza niz w przemianie prowadzacej do stanu b?
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